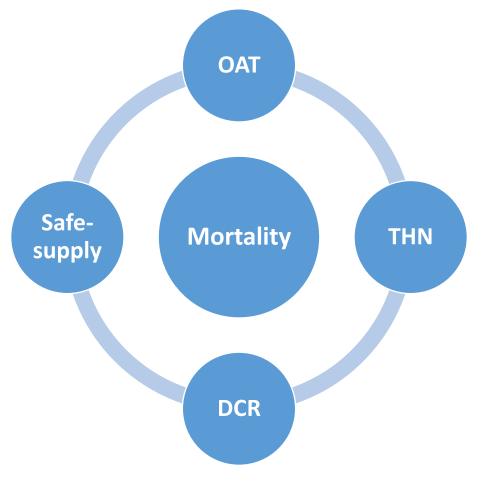
Mortality among individuals prescribed opioid-agonist therapy in Scotland, 2011-2020: a national retrospective cohort study

<u>Andrew McAuley</u>, Rosalyn Fraser, Megan Glancy, Alan Yeung, Hayley Jones, Peter Vickerman, Hannah Fraser, Lara Allen, Scott McDonald, Jack Stone, Dave Liddell, Lee Barnsdale, Saket Priyadarshi, Andreas Markoulidakis, Matthew Hickman and Sharon Hutchinson

University for the Common Good

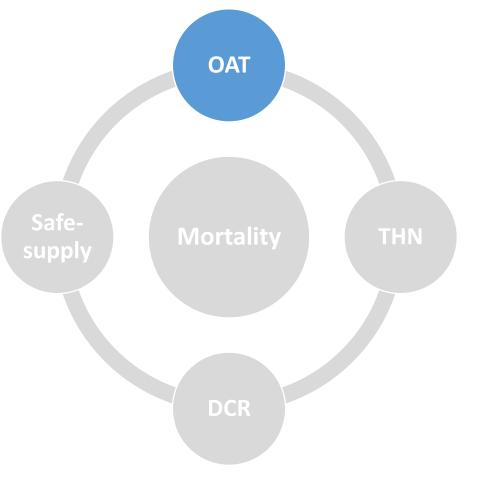
Conflicts of interest : None

Funded by Scottish Government grant :



EPHeSUS: Aim

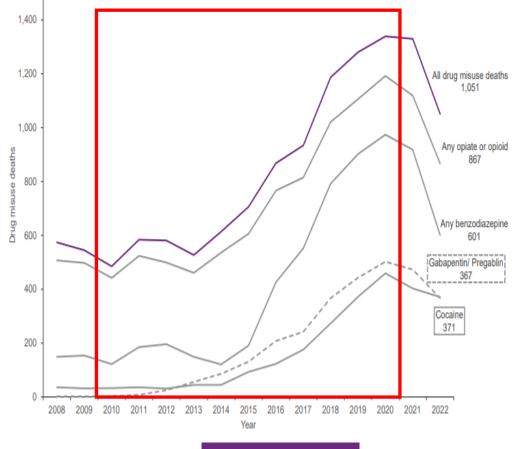
 Use linked and unlinked administrative data to measure the risks of mortality related to problem drug use in Scotland, and determine to what extent specific interventions are protective against drug-related deaths.



Evaluating the impact of Public Health interventions in reducing harms related to Substance Use in Scotland (EPHeSUS)

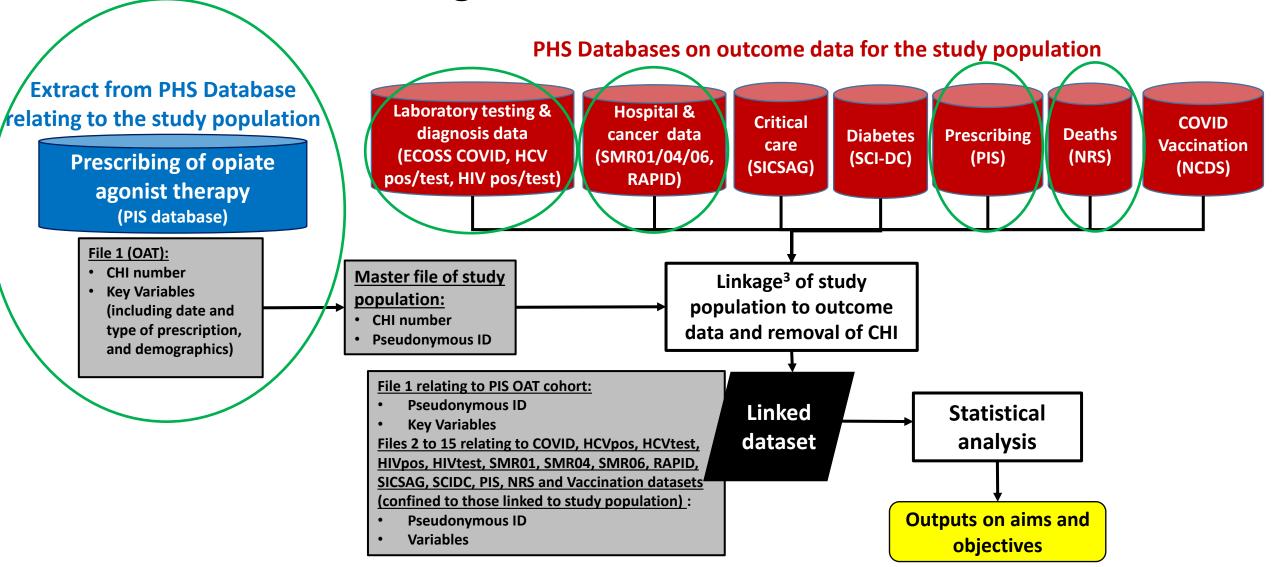
Evaluating the impact of Public Health interventions in reducing harms related to Substance Use in Scotland (EPHeSUS)

Background

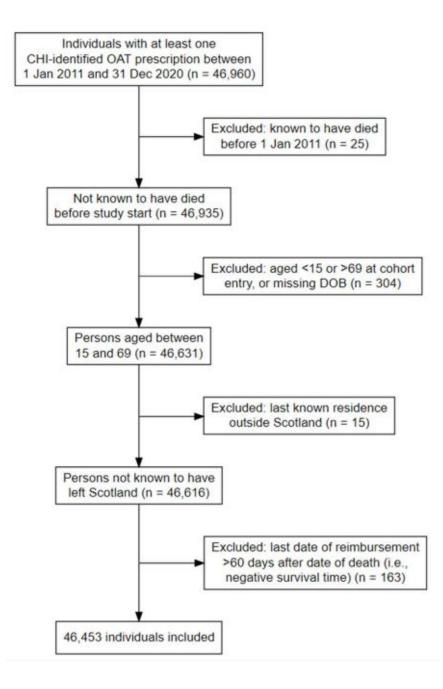

- Opioid-agonist therapy (OAT) available free through National Health Service since the 1980s in Scotland
- No recent evaluation of OAT, during a period when Scotland's number of drug-related deaths (DRDs) have more than doubled
- Aim : to examine the extent to which OAT in Scotland is protective against drug-related mortality and how this effect has varied over time

Annual number of drug-related deaths in Scotland, by drugs implicated 1,400 1.200 All drug misuse deaths 1.051 1.000 Any opiate or opioid 800 D Any benzodiazepine 600 Gabapentin/ Pregab 367 400 Cocaine 371 200 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

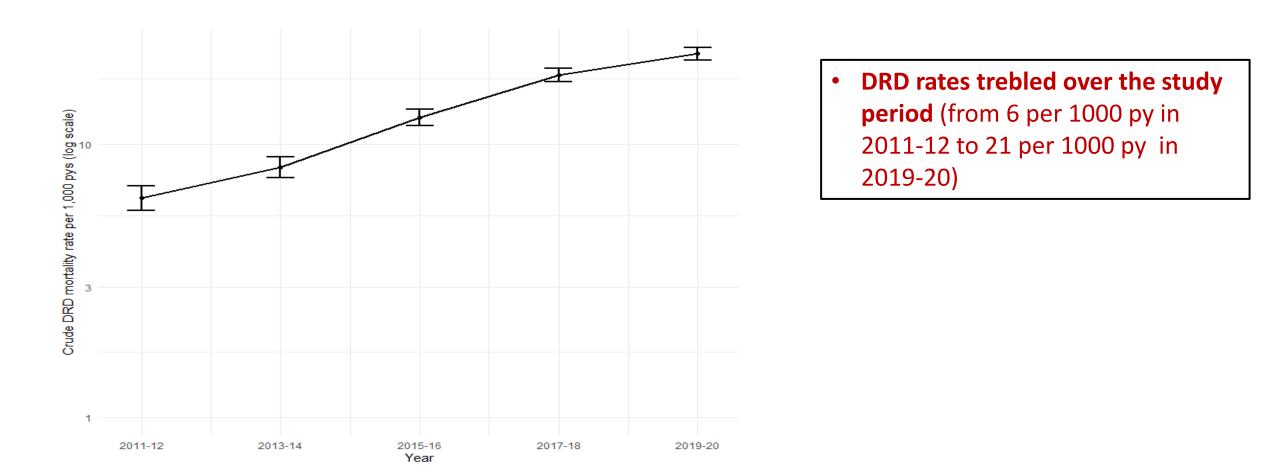
Background


- Opioid-agonist therapy (OAT) available free through National Health Service since the 1980s in Scotland
- No recent evaluation of OAT, during a period when Scotland's number of drug-related deaths (DRDs) have more than doubled
- Aim: to examine the extent to which OAT in Scotland is protective against drug-related mortality and how this effect has varied over time

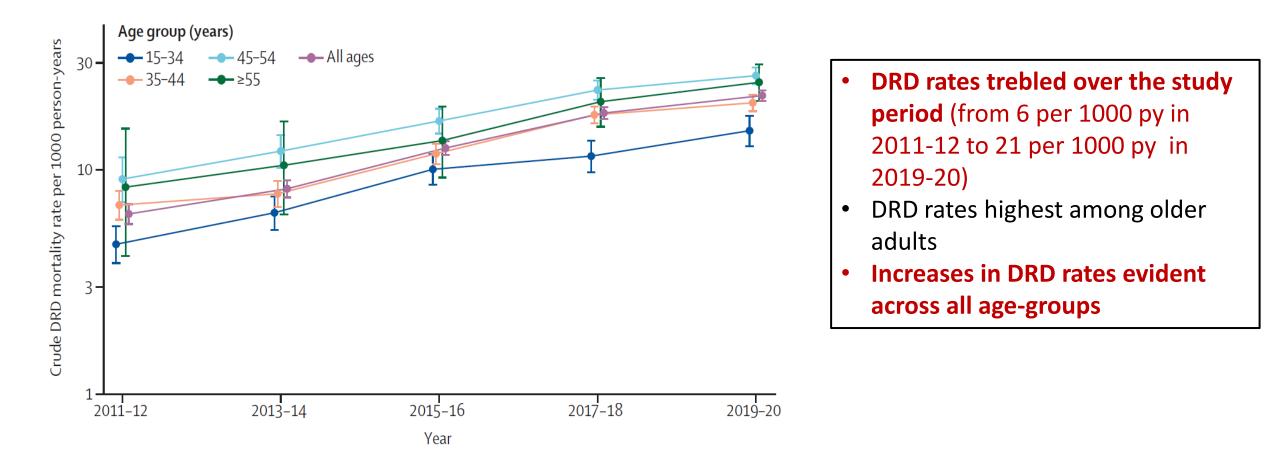
Annual number of drug-related deaths in Scotland, by drugs implicated



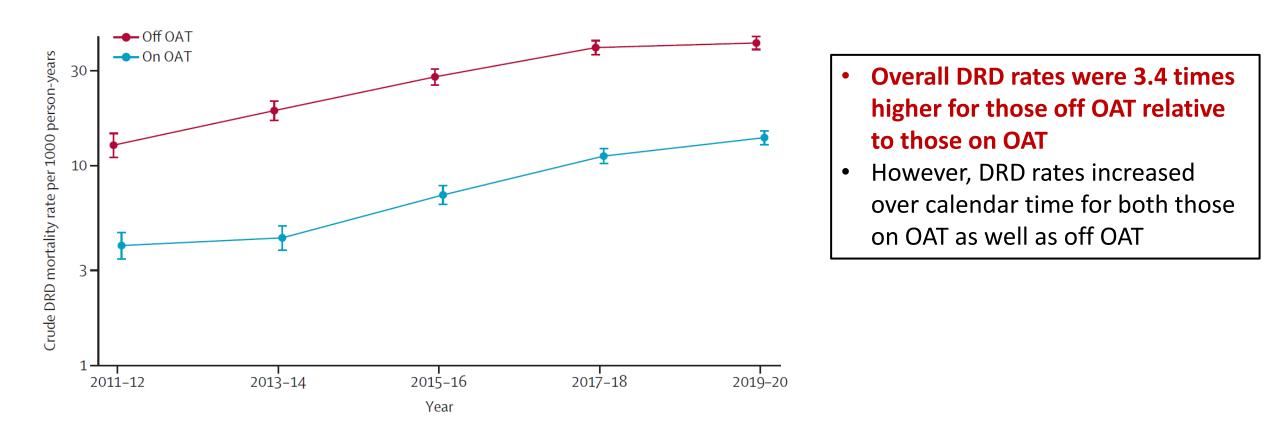
Retrospective cohort study established through linkage of administrative data¹


¹ Approval for linkage provided by NHS Public Benefit and Privacy Panel for Health and Social Care.

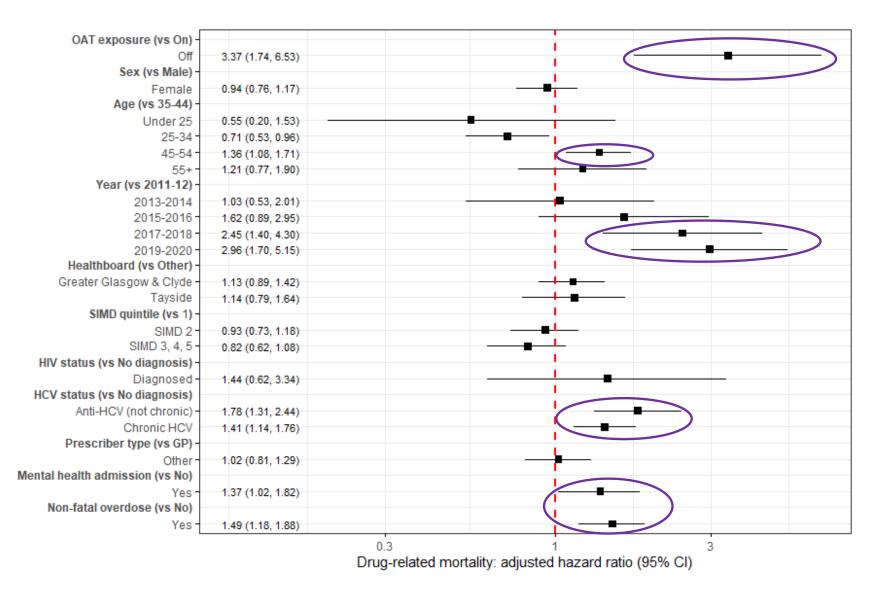
OAT cohort, 2011-2020


- 46,453 individuals following exclusions
 - 67% male
 - 78% aged 25-44 years at cohort entry
 - 61% prescribed by GP at cohort entry
 - 68% only prescribed methadone during follow-up
 - 22% methadone or buprenorphine
 - 10% buprenorphine (+/- naloxone)
- 304,042 person years
- 6,947 all-cause deaths (15% of cohort)
 - 4,076 drug-related deaths (47% of all DRDs across Scotland in this period)
 - 3,445 opioid-related deaths (85% of DRDs)

Crude drug-related death rates (log scale) among those prescribed OAT in Scotland, 2011-2020


Cohort followed up from 1st Jan 2011 up to earliest of date of death, 31st Dec 2020 or at 24 months following cessation of OAT treatment.

Crude drug-related death rates (log scale) among those prescribed OAT in Scotland by age-group, 2011-2020


Cohort followed up from 1st Jan 2011 up to earliest of date of death, 31st Dec 2020 or at 24 months following cessation of OAT treatment.

Crude drug-related death rates (log scale) among those prescribed OAT in Scotland by OAT status, 2011-2020

Prescription dates were not available for all patients; periods on/off OAT were instead based on reimbursements dates which were available for all prescriptions. **On OAT referred to the period from –60 days to –12 days of each reimbursement date**, given a) reimbursements dates were aggregated at the end of the month relating to when prescription is fully dispensed, b) the average number of days between prescription and reimbursement dates was 40 days and b) the duration between consecutive prescription dates was 28 days.

Adjusted hazard ratios (95% CI) for drug-related deaths among those prescribed OAT in Scotland, 2011-2020

Adjusted hazard ratios (95% CI) for drug-related deaths among those prescribed OAT in Scotland, 2011-2020

	Deaths	Person- years	Mortality per 1000 person-years (95% CI)	HR (95% CI)*†	p value	Adjusted HR (95% CI)†‡	p value	Adjusted HR (95% CI)†§	p value
2011-12									
On OAT	168	42124	3.99 (3.43-4.64)	1 (ref)		1 (ref)		1 (ref)	
Off OAT	200	15766	12.68 (11.04–14.57)	3.18 (1.79–5.66)	<0.001	3·34 (1·84–6·04)	<0.001	3·37 (1·74–6·53)	<0.001
2013-14									
On	194	44 476	4.36 (3.79–5.02)	1 (ref)		1 (ref)		1.03 (0.53–2.01)	0.924
Off	306	16194	18.90 (16.89–21.14)	4.33 (2.41-7.78)	<0.001	4.65 (2.53-8.54)	<0.001	4.85 (2.64–8.89)	<0.001
2015-16									
On	327	45732	7.15 (6.42–7.97)	1 (ref)		1 (ref)		1.62 (0.89–2.95)	0.115
Off	446	15989	27.89 (25.42–30.61)	3.90 (2.39–6.36)	<0.001	4.17 (2.60–6.68)	<0.001	6.72 (3.79–11.91)	<0.001
2017-18									
On	529	47266	11.19 (10.28–12.19)	1 (ref)		1 (ref)		2.45 (1.40-4.30)	0.002
Off	588	15041	39.09 (36.06–42.39)	3.49 (2.32–5.25)	<0.001	3.65 (2.46–5.43)	<0.001	9.01 (5.17–15.70)	<0.001
2019-20									
On	614	44376	13.84 (12.78–14.98)	1 (ref)		1 (ref)		2.96 (1.70–5.15)	<0.001
Off	704	17079	41.22 (38.28-44.38)	2.98 (2.08-4.27)	<0.001	3.11 (2.17-4.46)	<0.001	9.21 (5.34–15.90)	<0.001

HR=hazard ratio. OAT=opioid-agonist therapy. *HR modelled using quasi-poisson regression. †95% CIs were calculated using the quasi-poisson method. ‡Adjusted for age, sex, health board, Scottish Index of Multiple Deprivation, hepatitis C virus status, HIV status, prescriber type, mental health admission, non-fatal overdose admission. §Full model results including an interaction term for OAT exposure by time period.

- Being off OAT consistently associated with higher risk of DRD over time
- DRD rates increased 3-fold over time for both those on OAT as well as off OAT, after adjustment for age and other factors

Historical and international context : drug-related mortality

 Merrall et al (2012) – SDMD opiate cohort, 1996-2006 (239,771 py) Drug-related mortality 4.36 per 1000py 	Drug-related deaths Moskalewicz, 1996- Poland Bargagli, 2006 (VII)- Portugal Bogdanowicz, 2016- England Ferri, 2007- Italy Bargagli, 2006 (IV)- Ireland Pierce, 2015- England Pavarin, 2015- England Pavarin, 2015- United States Decembardt 2015- United States	0.11 (0.04, 0.30) 0.93 0.11 (0.08, 0.16) 1.82 0.25 (0.18, 0.33) 1.90 0.28 (0.11, 0.45) 1.27 0.31 (0.22, 0.44) 1.82 0.32 (0.30, 0.33) 2.11 0.36 (0.32, 0.40) 2.08 0.38 (0.36, 0.40) 2.11 0.42 (0.40, 0.44) 2.11
 Gao et al (2019) – methadone cohort, 2009-2015 (193,800 py) 	Merrall, 2012- Scotland Uosukainen, 2013- Finland Nambiar, 2015- Australia Bargagli, 2001 - Italy Veldhuizen, 2014- United States	0.44 (0.41, 0.46) 2.11 0.47 (0.31, 0.69) 1.76 0.50 (0.28, 0.88) 1.48 0.52 (0.47, 0.57) 2.09 0.58 (0.56, 0.61) 2.11 0.64 (0.56, 0.61) 2.11
- Drug-related mortality 6.83 per 1000py	Maughan, 2019- United States Brugal, 2016- Spain Bargagli, 2006 (I)- Austria Espelt, 2015- Spain Bargagli, 2006 (II)- Denmark	↓ 0.61 (0.55, 0.68) 2.08 0.63 (0.58, 0.67) 2.10 ↓ 0.66 (0.54, 0.81) 2.01 ↓ 0.70 (0.40, 1.10) 1.58 ↓ 0.71 (0.63, 0.79) 2.08
 McAuley et al (2023) – OAT cohort, 2011-2020 (304,042 py) 	Bargagli, 2006 (III)- England Marsden, 2017- England Parmar, 2017- England Clausen, 2008- Norway	↓ ↓ ↓ 0.74 (0.48, 1.13) 1.70 ↓ ↓ ↓ 0.78 (0.64, 0.95) 2.01 ↓ ↓ ↓ 0.90 (0.43, 1.90) 1.22 ↓ ↓ ↓ 1.03 (0.86, 1.24) 2.02
 Drug-related mortality 13.41 per 1000py 	Orti, 1996- Spain Bargagli, <u>2006 (VIII)</u> - S <u>pain</u> Gjersing, 2014- Norway Ledberg, 2017- Sweden Subtotal (I-squared = 98.4%, p = 0.000)	1.09 (1.00, 1.19) 2.09 1.30 (1.17, 1.43) 2.09 1.40 (0.96, 2.04) 1.78 1.49 (1.07, 2.06) 1.85 0.55 (0.47, 0.64) 50.31

Larney et al, JAMA Psychiatry 2020

International context : strong protective effect of OAT

	No. deaths in OAT/	No. deaths out of OAT/	Effect size		Favors	Favors	Weight,
Source	person-years	person-years	(95% CI)		in OAT	out of OAT	%
Buprenorphine							
Chang et al, ⁶¹ 2015	0/240	7/131	0.04 (0.00-0.64) 🗲	-			0.94
Digiusto et al, ⁵¹ 2004	0/88	1/13	0.05 (0.00-1.41) 🗲	-			0.67
Dupouy et al, ⁴¹ 2017	4/1402	25/1818	0.21 (0.07-0.60)		-		5.85
Pearce et al, ⁶⁹ 2020	87/13190	570/23712	0.27 (0.22-0.34)				27.01
Kimber et al, ⁵⁸ 2015	68/22110	324/31817	0.30 (0.23-0.39)				25.49
Reece et al, ⁵⁹ 2010	3/1119	40/6911	0.46 (0.14-1.50)	-			4.90
Kelty et al, ⁵⁷ 2019	28/6097	78/8619	0.51 (0.33-0.78)				18.48
Hickman et al, ⁴⁵ 2018	20/2877	94/7024	0.52 (0.32-0.84)		— — —		16.67
Subtotal 1 ² = 52.3% (P = .04)			0.34 (0.26-0.45)		\diamond		100.00
Methadone							
Huang et al, ⁶³ 2011	3/1245	28/719	0.06 (0.02-0.20)		—		1.15
Chang et al, ⁶¹ 2015	16/2621	45/1404	0.19 (0.11-0.34)		-		3.28
Scherbaum et al, ⁵² 2002	18/1114	14/172	0.20 (0.10-0.40)				2.58
Gronbladh et al, ⁴⁴ 1990	16/1085	80/1407	0.26 (0.15-0.44)				3.51
Gearing et al, ⁶⁷ 1974	110/14474	33/1170	0.27 (0.18-0.40)		———		4.66
Durand et al, ⁴² 2020	107/11875	45/1426	0.29 (0.20-0.40)		——— —		5.02
Cousins et al, ³⁹ 2016	115/22648	98/6247	0.32 (0.25-0.42)				5.75
Huang et al, ⁶³ 2013	13/551	13/209	0.38 (0.18-0.82)		e		2.27
Evans et al, ⁶⁶ 2015	163/25277	868/51380	0.38 (0.32-0.45)				6.62
Appel et al, ⁶⁵ 2000	93/6130	83/2355	0.43 (0.32-0.58)				5.50
Pearce et al, ⁶⁹ 2020	2085/188113	4237/174431	0.46 (0.43-0.48)				7.24
Fugelstad et al, ⁴³ 2007	77/3354	108/2171	0.46 (0.34-0.62)				5.53
Weber et al, ⁵³ 1990	7/169	33/371	0.47 (0.21-1.06)				2.08
Ledberg et al, ⁷⁰ 2017	36/1493	31/662	0.51 (0.32-0.83)				3.91
Liu et al, ⁶⁴ 2013	1527/190646	4046/282059	0.56 (0.53-0.59)				7.23
Kimber et al, ⁵⁸ 2015	750/136200	1777/183696	0.57 (0.52-0.62)		-		7.12
Hickman et al, ⁴⁵ 2018	106/9926	266/17517	0.70 (0.56-0.88)				6.14
Kelty et al, ⁵⁷ 2019	59/8893	99/10569	0.71 (0.51-0.98)				5.26
Cousins et al, ³⁸ 2011	61/4068	79/4313	0.82 (0.59-1.14)			_	5.15
Fellows-Smith et al, ⁵⁶ 2011	14/1922	23/3096	0.98 (0.50-1.91)			—	2.74
Muga et al, ⁴⁹ 2014	299/9685	142/5439	1.18 (0.97-1.44)			-	6.36
Morozova et al, ⁴⁸ 2013	6/13	3/12	1.83 (0.46-7.31)				0.89
Subtotal 1 ² = 90.0% (P <.00)	1)		0.47 (0.41-0.54)		\diamond		100.00
			0.01	0.1			10
					Effect size (95% 0	CI)	

March and a second

We found a stronger protective effect of OAT in the Scottish cohort (70% reduced risk of DRDs)

compared to that from recent global

review and meta-analysis

(pooled RR 0.41; 95% CI 0.33-0.52)

Santo et al, JAMA Psychiatry 2021

Key points

- One of the largest national cohorts of people prescribed OAT studied in the UK/internationally.
- Amongst the **highest ever recorded mortality rates** in OAT cohort studies; **more than double** international pooled estimates.
- Among people prescribed OAT, DRD rates have increased over the last decade <u>for both those on and</u> <u>off OAT</u>. OAT is not a panacea for Scotland's DRD crisis – other interventions needed.
 - But...mortality rates consistently higher in those off-OAT, therefore treatment is protective!
- The **elevated risk** associated with being off OAT was **highest between 2015 and 2018**, a period when Scotland's DRD rate increased markedly to **one of the highest internationally**.
 - Why? Changing polydrug use (e.g. Benzos)? Funding cuts?
- Increases were evident across age-groups, adding weight to the consensus that Scotland's overdose epidemic is not solely explained by an ageing cohort.

THE LANCET Public Health

Mortality among individuals prescribed opioid-agonist therapy in Scotland, UK, 2011–2020: a national retrospective cohort study

Andrew McAuley, Rosalyn Fraser, Megan Glancy, Alan Yeung, Hayley E Jones, Peter Vickerman, Hannah Fraser, Lara Allen, Scott A McDonald, Jack Stone, Dave Liddell, Lee Barnsdale, Saket Priyadarshi, Andreas Markoulidakis, Matthew Hickman, Sharon J Hutchinson

Comment

Lost lives and opportunities for the legacy of harm reduction **QA** () in Scotland, UK

Catherine Maria Comiskey catherine.comiskey@tcd.ie

Thank you for listening

andy.mcauley@phs.scot

@arjmcauley

University for the Common Good

